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Influence of the noise spectrum on the anomalous diffusion in a stochastic system
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We use an effective Markovian description to study the long-time behavior of a nonlinear second-order
Langevin equation with a Gaussian noise. When dissipation is neglected, the energy of the system grows as
with time a power law with an anomalous scaling exponent that depends both on the confining potential and on
the high-frequency distribution of the noise. The asymptotic expression of the probability distribution function
in phase space is calculated analytically. The results are extended to the case where small dissipative effects are

taken into account.
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I. INTRODUCTION

The influence of a random perturbation on a dynamical
system is a problem of interest in various fields of science
and engineering [1-6]. The first example of a differential
equation with stochastic terms appeared in Langevin’s study
of Brownian motion [7,8]. Langevin modeled the action of
the solvent molecules on the Brownian particle as the sum of
a deterministic viscous friction, proportional to the velocity
of the Brownian particle, and of a random force of autocor-
relation proportional to the temperature of the bath. Since
then, it has been customary to add in the dynamical equa-
tions some phenomenological stochastic terms that describe
random environmental loadings (e.g., the influence of a tur-
bulent wind on a suspension bridge or the study of random
parametric vibration of helicopter rotor blades in atmo-
spheric turbulent flow [9,10]). Of particular interest is the
determination of the energy flow into the system from exter-
nal sources when the characteristic time of the parameters
variations matches one of the natural frequencies of the sys-
tem. Parametric resonance then occurs and the rate of in-
crease in the amplitude is generally exponential leading to
instability. The growth of the response is limited by various
nonlinear effects.

Several methods have been developed to study random
parametric vibrations [10]. One of the most efficient tech-
niques is the averaging principle developed by Bogoliubov
and Mitropol’skii for deterministic nonlinear vibrations [11],
where rapidly fluctuating circular coordinates are averaged
out leading to a set of effective dynamical equations for slow
variables. This method was extended to stochastic systems
by Stratonovich [6] and put on a rigorous mathematical basis
by Khas’minskii [12] and by Papanicolaou and Kohler [13].
Since then, stochastic averaging has become a powerful
method [14,15] (for a recent review, see [16] and references
therein).

In a series of recent works [17-20], we studied the long-
time behavior of the nonlinear oscillator subject to paramet-
ric noise. We showed that in the absence of dissipation, the
nonlinear terms in the potential stiffness inhibit the exponen-
tial growth of the amplitude. The observables of the system
(the amplitude, the momentum, and the energy) rather dis-
play power-law scalings with anomalous diffusion expo-
nents. When the parametric noise is a Gaussian white noise
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(i.e., it has a vanishingly small correlation time), the averag-
ing method applied to the energy envelope [6,10,21-23] al-
lows us to calculate analytically the time-asymptotic prob-
ability distribution function (PDF) of the system in phase
space [17]; knowing this PDF, the scaling exponents and the
corresponding prefactors are readily deduced. However, for
colored noise a competition between conflicting time scales
occurs. In fact, the nonlinear oscillator has an amplitude-
dependent intrinsic frequency that increases with the ampli-
tude. As the oscillator absorbs energy from its environment,
its amplitude grows and, at a certain stage, the intrinsic pe-
riod becomes smaller than the correlation time of the noise.
This corresponds to a cross-over regime at which the corre-
lation time of the noise ceases to be the smallest time scale in
the system. The scaling laws that govern the growth of am-
plitude, momentum, and energy differ from those calculated
for a white noise. Thus, when the amplitude of the oscillator
is small its intrinsic period is large and the noise appears as if
it was white and white-noise exponents prevail; but at large
amplitudes, the scaling regime changes and new exponents
appear. Because of these conflicting time scales, the averag-
ing technique is difficult to implement for a colored noise. At
the lowest order, the noise itself is averaged out and the
energy transfer stops at the cross-over time. Therefore, one
has to perform averaging at higher orders. When the colored
noise is an Ornstein-Uhlenbeck (OU) process the calcula-
tions can be carried out by a second-order averaging, which
requires rather tedious mathematical manipulations [18,19].
It is also possible to calculate the crossover between the
white noise and the Ornstein-Uhlenbeck scaling regimes.
The averaging method works at second order for the
Ornstein-Uhlenbeck noise because its time derivative is a
white noise. However, if the random excitation is generated
from a white noise through a differential equation on the
order of n, one has to perform averaging at (n+1)th order
and, in practice, the calculations are intractable.

In the present work, we follow an entirely different ap-
proach to study the nonlinear oscillator subject to a paramet-
ric Gaussian noise with an arbitrary spectrum (with the as-
sumption that the spectrum decays as a power law at high
frequencies). We shall use an effective coarse-grained Mar-
kovian description of the dynamics, following a technique
developed by Carmeli and Nitzan [24] (see also [23,25,26]
for a similar approach). This technique will allow us to cal-
culate analytically the asymptotic PDF which leads to the
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formulae for the growth of the amplitude, of the momentum,
and of the energy transfer. In particular, we shall prove that
the scaling exponents depend both on the stiffness of the
potential at infinity and on the smoothness of the random
excitation; the smoother the noise (which corresponds to a
faster decay of the power spectrum at high frequencies), the
less efficient is the energy transfer from the bath to the os-
cillator. The method used here can be adapted both to addi-
tive and multiplicative noises and can also be used when a
small friction is present. The system reaches at large times a
nonequilibrium steady state in which physical observables do
not grow anymore; the crossover from power-law growth to
this steady state occurs when the rate of energy dissipation
by friction matches that of energy absorption from the ran-
dom environmental loading.

The outline of this work is as follows. In Sec. I, we define
precisely the model we shall study. In Sec. II, we use the
underlying integrability of the system to write exact dynami-
cal equations in energy-angle variables and we use the
coarse-grained Markovian description to derive an effective
Fokker-Planck equation for the energy variable. In Sec. III,
we derive explicit formulae for various cases: multiplicative
or additive noise, with or without dissipation. This leads to a
rather exhaustive description of all the different cases. In
particular, we verify that this method allows us to recover the
analytical results obtained previously for white and Ornstein-
Uhlenbeck noises. The last section is devoted to concluding
remarks.

II. NONLINEAR OSCILLATOR
WITH PARAMETRIC NOISE

A paradigm for the study of interplay of noise and non-
linearity is the nonlinear oscillator subject to parametric ran-
dom excitations,

42 d U
(04 7 x(0) + [+ 60 (D) + W

=0. (1)

The variable x() represents the amplitude of the oscillator at
time ¢. The potential U(x) that confines the oscillator is as-
sumed to grow faster than quadratically when |x| — giving
rise to nonlinear terms in the restoring force. We shall make
the simplifying assumption that I/ is an even function of x
and behaves as a power law of x when |x|—c. Then, a
suitable rescaling of x allows us to write

g
2v

with v=2. (2)

Typically, v is an integer; the value v=2 corresponds to the
Duffing oscillator.

The physical interpretation of Eq. (1) is that the linear
stiffness of the oscillator fluctuates around its mean value w%
because of randomness in the external conditions and this
randomness is represented by the external noise &(r). We also
suppose that the oscillator is subject to a linear friction with
damping coefficient 7.

Equation (1) is thus a nonlinear stochastic differential
equation. When the multiplicative noise &(7) is a white noise,
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a coherent convention to perform stochastic calculus must be
chosen. Although the Ito calculus is favored by mathemati-
cians, we shall use here the Stratonovich calculus [27,28],
which is physically more sound because it appears naturally
when one considers the white noise as a limit of colored
noise with very short correlation time [7,27]. This equation
seems to be very elementary, but it embodies many features
of random dynamics: inertial effects, nonlinear stiffness, and
parametric noise. In fact, many complex dynamical systems
that appear in realistic engineering problems can be reduced
after some simplifying assumptions to Eq. (1). For example,
the torsional stability of a suspension bridge under the influ-
ence of wind loads can be reduced to an equation similar to
the one we are studying [10,29]; similarly, the dynamics of
liquid sloshing, the roll motion of a ship, or the stability of
helicopter rotor blades in hoover flight under atmospheric
turbulence can be reduced to effective single-degree-of-
freedom systems represented by a second-order equation
with random parametric vibrations (for an explicit derivation
of such equations, see, e.g., [10]). This equation is also akin
to the model proposed by Fermi to explain the acceleration
mechanism for interstellar particles; however, in the Fermi
model the randomness of the acceleration results from mo-
mentum coupling (i.e., the damping y would be random) and
not from a stochastic force [30-32]. Finally, from the math-
ematical point of view, Eq. (1) is also very appealing. It is
rich enough to exhibit an interesting dynamical behavior but
simple enough to allow for explicit solutions [33-35]. This
explains why such a simple model can play the role of a
paradigm.

The phase-space origin x=0 and dx/dt=0 is a solution of
Eq. (1). However, it can be shown that this solution is un-
stable [36,37] when the power spectrum of the noise contains
all possible frequencies. When friction is neglected (i.e., if
the underlying deterministic system is Hamiltonian) then be-
cause of the permanent injection of energy into the system by
the noise, the amplitude, the velocity, and the energy undergo
an anomalous diffusion. The associated anomalous diffusion
exponents and amplitudes have been calculated exactly when
the random excitation is a Gaussian white noise [17] or an
Ornstein-Uhlenbeck process [18].

In the present work, we study the effect of the statistical
properties of &(f) on the long-time behavior of the dynamical
variable x(f). We must therefore specify the characteristics of
the random perturbation &(r). We shall consider a stationary
Gaussian noise of zero mean value. A Gaussian process is
fully characterized by its autocorrelation function defined as

S(t" = 1) = (&) &()). A3)

In Fourier space, the power spectrum of the noise is given by

S(w) = f - dt exp(iwt)S(1) = f - dt exp(iwt){&(1)£(0)).
(4)

If &(¢) is a white noise of amplitude D, we have
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St —1)=Ds(t' —1), S(w)=D. (5)

When &(7) is an Ornstein-Uhlenbeck process of amplitude D
and of autocorrelation time 7, we have

D
ror 9
In this work, we shall consider the case where the power

spectrum of &(r) decays at high frequencies in the following
manner:

D , R
St -1)=—e"" S(w)=
27

3(0)) ~ D(w7)72,
when
|| — o0, (7)

The amplitude D of the noise and the correlation time 7 are
defined by the dimensional analogy with Eq. (6). The expo-
nent o characterizes the high-frequency behavior of the
power spectrum. When ¢ is an integer, such a noise can be
generated from the white noise by solving a linear differen-
tial equation of order o.

We shall prove that in the long-time limit, the statistical
properties of the oscillator in phase space can be classified by
the following two parameters: (i) the exponent v defined in
Eq. (2) that encodes the large amplitude behavior of the con-
fining potential I/ and (ii) the exponent ¢ that determines the
high-frequency behavior of the power spectrum. For fixed
values of v and o, the phase-space distribution takes in the
long-time limit a universal form (that also depends on the
dimensional parameters 7y, 7, and D) that we shall calculate.

II1. EFFECTIVE DYNAMICS IN
THE ASYMPTOTIC REGIME

A. Use of integrability

The mechanical energy of the oscillator is defined as
1,
E= 27X +U(x). (8)

In the absence of noise and dissipation this quantity is con-
served. This implies that the Hamiltonian system underlying
Eq. (1) is integrable. It is therefore possible to define an
action variable J and an angular variable ¢ so that the trans-
formation (p=x,x)—(J,¢) is a canonical transformation.
For a given value E of the energy, the angle ¢ is given by
[38,39]

¢—w(E)fXL
0 V2AE-Uy)]

with

ao-2[" =]
\wmly \2AE-u(1)

where x,,, satisfies U(x,) =E (recall that I/ is an even func-
tion). With this definition, the range of the phase ¢ is 2.
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The action variable J is a function of the energy only and is
determined by the following equation:

aJ 1
E:E. (10)

The Hamiltonian equations of motions, in terms of the
action-angle variables, read simply as

——M=O, (11)
déo
| dEU.¢)
b== = =alE). (12)

The variables (E, ¢) define a bona fide set of coordinates in
phase space. The formulae for transforming the variables
from position and velocity to energy and angle are given by

+00

x(E,¢)= X, x,(E)e"?, (13)
ME, ¢) = 2 v,(E)e"?=iw(E) D nx,(E)e"®. (14)

Here, to write this change in variables, we have used only the
deterministic and dissipationless parts of the dynamics. We
choose the origin of ¢ such that x,(E) is a real number and
that x,(E)=x_,(E). We also write

1 = .
SCED = X (B (15)
We then have
a1 < dy,(E)
—| =AE,p) | = D ELeind, 16
&E[Zx( ¢)] E_w 5 ¢ (16)

400

ﬂ%@w}mmzwﬂW# (17

n=—o0o

In the general case, we find from Eq. (1) that the time varia-
tion of the energy is given by

2

E ) d(x
E=—7x2+§(t)a<5>~ (18)

We have used here the rules of classical calculus when
changing variables [7,27]. This is allowed because we are
working with the Stratonovich interpretation of Eq. (1). The
energy variation has thus two contributions: a loss term due
to friction and a stochastic “elastic energy” term due to the
work of the random multiplicative force x&(z).
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The time variation of the angle variable is given by

% = () + [t~ ()]lE) o

- () + yw(E)xj—z - g(z)w(maiE [ §x2<E, ¢)] .

(19)

If we substitute in the two dynamical equations (18) and
(19), the expressions given in Egs. (13), (14), (16), and (17),
we obtain

+% +o0

E=y0XE) 2, 2 x,(E)x,(E)e™m¢

n=—0 p=—0
+00

- &0 w(E) 2 iny,(E)e™?, (20)

n=—0

0 0

b= w(E)+yoX(E) X, X inx,(E)

n=—00 m=—00

+00 d '
+EDW(E) S %e”"b.

n=—0

dxm_(E) pllmrm ¢
dE

(1)

We emphasize that this coupled system of stochastic nonlin-
ear equations is rigorously equivalent to the initial random
dynamical equation (1).

B. Effective Markovian description

Although the problem we study here is non-Markovian
because the noise has a nonvanishing correlation time, it is
possible to derive for the associated probability distribution
function P/(E,¢) an effective coarse-grained Markovian
equation using a Kramers-Moyal-type expansion [7,8,27],

IP(E.¢) _ umli(__l)n 2 <i>m< : >k

Jt 5—0% 5n=1 n! m+k=n JE Iﬁ
m,k=0
X[Mm,k(E’ ¢’t9 E)P,(E, (;b)]’ (22)
where we have defined
M, i(E, $.1,8) = [AE(8)]"[A¢(D)]Y), (23)

with
5
AE(S) =E(t+ 6 —E(t) = f dsE[E(t +5),p(t +5),t + 5],
0
(24)
and
5
A (0) = d(t+ 6) — P(1) =f dsd[E(t+5),d(t +5),t+s].
0

(25)

The expressions of E and ¢ on the right-hand side of Eqs.
(24) and (25) are given in Egs. (20) and (21), respectively.
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The time scale 6 that appears in the Kramers-Moyal ex-
pansion must be chosen in a physically relevant manner. &
has to be small but must remain larger than the intrinsic
period of the oscillator (this condition is automatically ful-
filled at large amplitudes because the intrinsic period tends to
zero). Besides, one must also have 6> 7 (where 7 character-
izes the correlation time of the noise) in order to end up with
an effective Markovian description of the dynamics.

A systematic procedure for evaluating the coefficients
M,, ;. that appear in Kramers-Moyal expansion has been de-
veloped by Carmeli and Nitzan in [24]. We first rewrite Egs.
(24) and (25) as

P)
AE(d) = f dsE[E(t) + AE(s), (1) + Ap,(s),t + 5],
0

(26)

6
Ay () = f ds@[E(1) + AE(s), $(1) + Apy(s),1 +5].
0

(27)
The values of AE,(8) and A¢,(6) are evaluated according to

the following iteration scheme labeled by the integer index

S5
AE(8) = J dsELE(D) + AE[™(s), $(1) + A (s).1+ 5],
0

(28)

5
AP(8) = f ds@[E(D) + AEV(5), (1) + A ™(s).1+ 5],
0

(29)
with initial values given by

AEO(5)=0, AG(s) = w(E)s. (30)

Performing this expansion and neglecting the terms on the
order of &' with n>1, we obtain, in the limit 6— 0, after
some systematic but tedious calculations,

+00

HAE(®) =y (E) S (B

2028, dlo(E)y,(E)] 5 Al (E)]
2(E) < ds,
+%n§wn2|yn(5)|z JE (31)

2 e
Lapo) =" S vl ops, 6

n=—0

(AE(9)A¢(9)) =0, (33)

where we have defined
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S,=8nw(E)] = J dt explinw(E)t(&(1)£0)).  (34)

We do not need to give the exact values of (A¢p(5)) and
((A¢)*(5)) because they will have no incidence in the fol-
lowing calculations. Higher moments are negligible at the
considered order of the calculations.

C. Effective Fokker-Planck equation for the energy

We now substitute the average values calculated in Egs.
(31)—(33) into the Kramers-Moyal expansion (22). Because
the cross-correlation term (AE(S)A¢p(5)) vanishes, we can
integrate out the angular variable from Eq. (22) and obtain an
effective Fokker-Planck equation for the energy,

IP(E) 9 {<AE(5)> } 7 {«AE)Z(&» }

= —\—P(E) {+ 5| ———P(E
at OE ) {E) T 26 {E)
(35)
Defining the following two auxiliary functions:
400
&(E)= 2 n’lx,(E), (36)
1<
) =7 2wl (E)PS,, (37)
we rewrite Egs. (31) and (32) as follows:
1 de,(E)
SAE(9) == v (B)ey(E) + o (E)— =
dw(E)
+ &(E)w(E) 5 (38)
1
2—6((AE)2(5)> = w’(E)&(E). (39)

Substituting these expressions in Eq. (35) leads us to the
effective Fokker-Planck equation for the energy,

P(E
‘9&—&) _ é’iE{ (E){yem . EZ(E)aiE} w(E)Pt(E>}.
(40)

For dissipationless motion y=0, this equation does not
have a stationary solution. The particle diffuses in phase
space by absorbing energy from the noise and there is no
mechanism to limit the growth of the amplitude. The observ-
ables grow as power laws with time as the explicit solutions
of the next section will show. When y#0, the system
reaches a stationary measure characterized by a nonequilib-
rium steady state with an asymptotic probability distribution
P(E) that differs from the canonical Boltzmann-Gibbs law.
For yr<<1, the effective Markovian description remains
valid and the stationary solution of the effective Fokker-
Planck equation is given by
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N E
exp —J’J dul e;(u)/&;w)] (.,  (41)

Pstat(E) = (E)
o 0

where the prefactor N ensures the normalization of Pg,(E).

IV. EXPLICIT SOLUTIONS
A. Hamiltonian case

We shall first consider the case where the dissipation ef-
fects are not taken into account. In the absence of dissipa-
tion, the physical observables such as the amplitude, the ve-
locity, and the energy of the oscillator grow as power laws
with time. We shall calculate the associated scaling expo-
nents and prove that their values depend only on », which
determines the behavior of the external potential at large am-
plitudes and on o that measures the relative weight of high
frequencies in the noise spectrum (and which also character-
izes the smoothness of the noise).

In the long-time limit, the particle diffuses to large ampli-
tudes in phase space. Therefore, in Eq. (1), we can neglect
the linear restoring force (proportional to w,) and replace the
potential by its asymptotic behavior given in Eq. (2): U(x)
~ % Then, the change in variables to energy and angle co-
ordinates given in Egs. (8) and (9) takes the simpler form,

XE)'?
2 / 2y
1 xY mJo V1—u

E=—x*+—, =— . (42
x » ¢ > f " (42)
o V1 —u?

The equation of motion for the underlying deterministic sys-
tem are given by

E=0,
¢=w(E), (43)
where
m (2vE)-DeY)
W(E) = ——"F——— = -2y
= 2\ Jl du E
0 V1—u?”
with
(zv)(v—l)/(Zv)r< v+l )
2V —
Co= Va, (44)

()

where the last formula, in terms of the Euler Gamma func-
tion, is obtained from [40]. We now define [41] the hyperel-
liptic function 7,,

X du
T(Y)=X < Y=J (45)

.
0 \"1 _u2v

The function 7, is periodic with period
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b du 2Wa F(ﬁ)
t,=4 7 > = LY -
0 Vl —u v F( 2v )

Inverting Eq. (42), we express the position and the velocity
in terms of energy and angle using the function 7, [40,41],

(46)

x(E, ¢) = (2vE)" 2V>T( ”d’) (47)

X(E, ) = \2E’T’( ”¢) (48)

where TV' is the derivative of the function 7, which, using
Eq. (45), satisfies the relation

[T +[T, (V) =1. (49)

The coordinates x and x are 27 periodic functions of the
angle variable ¢; they can thus be developed into Fourier
series as in Egs. (13) and (14). More precisely, if we write

( ) Efn g, (50)

n=—ow

we obtain the Fourier coefficients of x and x

x,(E) = (2vE)""f,. v, (E)=\2E(inf,).  (51)

We note that in the present case, the Fourier coefficients
depend on the energy E only through a global prefactor that
does not depend on the harmonic .

This identification allows us to calculate exactly the func-
tion €(E) defined in Eq. (36),

e(E) = 2vE)"" 2 n’f

n=—0

~ (2VE)1/V<2>2J27T
2@ \2w@/ ),

tv_d) 2
TL( 277) 49,

1/v /4
=—(2E;E : St f (VN1 = [T()]*ay
) 0
(ZVE)UVIV ! I—
=—7F | duVl-u?, (52)
772 . uy u

where the second equality is obtained using Parseval’s iden-
tity, the third equality using Eq. (49) over a quarter of a
period of the hyperellectic function 7,, and the fourth equal-
ity by the change in variable 7,(Y)=u. Using the expression
(46) and evaluating the last integral in terms of Gamma func-
tions [40], we obtain

(3]
(2vE)"" v 2v
mv(v+1) Fz( v+ 1) '

2v

€(E)= (53)

We now calculate the function €,(E) defined in Eq. (37).
Using Egs. (15) and (47), we find that
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(ZVE)]/V

yn(E): 7 8n>

where

(52)-Zeee o

Because 7, is a real and even function of ¢, we have g,
=g_, and we can rewrite €(FE) as follows:

2/ F
(2” E)” 2 228 (55)

6&(E) =

This sum depends in a nontrivial manner on the noise spec-
trum. We are, however, interested in the long-time behavior
of the probability distribution function JP,(E). When ¢— o,
the typical value of the energy E of the system also increases
without bounds and, therefore, the intrinsic frequency w(E)
of the system, which according to Eq. (44) is proportional to
EW=D/2%)_ als0 increases without bounds. Thus, when —s oo,

we can replace gn{:é[nw(E)]} by its asymptotic behavior
given in Eq. (7) and obtain

+00

p BT 5 22, (56)

BV =D ) e =

Denoting by A, the value of the convergent series
S*= n?29¢2 we can write

(21})2/1/
4(CV)2"A"’
(57)

&(E) = with D, ,=D

where C, was defined in Eq. (44).

When the noise is white =0, its power spectrum is con-
stant and the sum in Eq. (55) can be evaluated exactly. Fol-
lowing steps similar to those which led to Eq. (52), we obtain

1 3
I'\—|I'l —
(2vE)?¥ 2v 2v
471? F<V+ l)F(3v+3> '
2v 2v
For an Ornstein- Uhlenbeck noise o=1 and we must

evaluate the expression ' ¢2. This, again can be done ex-
plicitly, thanks to the Parseval identity,
FZ(i)
2v

ZI}E r( 1’>F< 1’)
8”1}7 <V+I> <5+V> 2<V+3)
2V 2V 2V

(59)

&(E)=D (58)

&(E)=D

We now deduce the asymptotic expression of the prob-
ability distribution function dP,(E) in the limit 7—o and
when there is no dissipation. The effective Fokker-Planck
equation then reduces to
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IP(E) 4§

aw(E)PxE)] (60)
ot aE

[ W E)eB)

Taking into account the expressions of w(E) and & (E) given
in Egs. (44) and (57), respectively, we can rewrite this equa-

tion as
IP(E) Dyo(C,)° 3 ( E¢aE<H>/<2”>P,(E)>
a P JE OE
with
v+3-20(r-1)
p=——. (61)

2v

This equation has a self-similar structure [42] and it is natu-
ral to look for solutions of the form

pior- Lo
with
2
K:DV’;(SV) ’ a=(0+1)(v_1), 62)

the prefactor 1/E ensures that P,(E) is normalized. The func-
tion ¢(u) of the scaling variable u=E®/(Kt) satisfies an or-
dinary differential equation. The solution of this equation is
given by

¢(u) o u(v+l)/(2va)e—u/a2. (63)

Inserting this solution into the expression (61) for P,(E) we
find, after normalization, the following asymptotic formula
for the probability distribution function:

a 1 E“ (v+1)/Q2va) E“
e I‘( v+ 1>E oKt P\T ki)

2va

(64)

where K and « are defined in Eq. (62).

From this general result, we can retrieve the solutions for
white noise (W) and for Ornstein-Uhlenbeck noise. For
white noise, using Eq. (58) we have

1 -1 —1)/v\ (v+1)/[2(v-1)]
PY(E) = - ( ~ )
F( v+ 1 ) vE 2Dyt
2(v—1)
E(V—l)/v
Xexpy — — = ,
2Dyt
with
3 3v+1
- (2V)”V(V—1)ZF<Z)F< 20 )
Dw=P— 1) 0\ (3oe3) O
v(v+ F(—)F( v )
2v 2v

This formula was also obtained in [17] by stochastic averag-
ing. For Ornstein-Uhlenbeck noise, we have, using Eq. (59),
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ou ~ 1 2(1/—1) E2(V—1)/V (v+1)/[4(v-1)]
B = ——— -
F(L) VE 2D0Ut
4(v-1)
E2(V—l)/1/
Xexpy — —— R
2Dyt
with
Dou= (27/ o

14

E (2] el
T ()

This formula is identical to the one derived in [18] by using
the averaging method at the second order.

To summarize, we have shown that in the long-time limit,
the scaling behavior of the dissipationless nonlinear oscilla-
tor in the presence of a noise with a power spectrum that
satisfies Eq. (7) is given by

( Dt )V/[(a'+1)(v—1)]

(66)

5

o

>

( Dt ) 12[(a+1)(v»-1)]
X~ 52
7_20'

Dt v2[(o+1)(v-1)]
X~ 7’ . (67)

These scalings derived here by a systematic calculation agree
with the results given in [20] that were conjectured by per-
forming a partial resummation of the small correlation-time
expansion of the stochastic Liouville equation associated
with the random dynamical system under study. The method
used in [18,20] was an approximation that could not be ap-
plied to the system studied here but only to a simplified
model. In fact, the resummation technique yielded the cor-
rect exponents but the prefactors were out of reach. Here, we
have obtained the closed expression (64) for the probability
distribution function, which contains the full information on
the statistics of the system when r— o, i.e., it provides us the
scaling exponents and the corresponding prefactors.

B. Dissipative case

In the presence of dissipation, the system reaches in the
long-time limit a steady state with the stationary probability
given by Eq. (41). Using Egs. (53) and (56), we find the
explicit formula for this stationary distribution,
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» (E) @ 1 ( 2V’}/Ea )(Hl)/(ZV&)
st _F(V+1>E aK(v+1)

2va

2vyE“ ) 68)

X - 1/
exp( aK(v+1)

where K and « are defined in Eq. (62). From this stationary
PDF, we find that the behavior of the mean energy as a
function of the parameters of the model is given by

D
yr7
We observe that the expression of Py, (FE) becomes identical

to that given in Eq. (64) if the time ¢ in Eq. (64) is replaced
by ¢, with

E“ ~

(69)

1 v+1

e -1 o

The value of ¢, determines the time scale at which the system
becomes sensitive to the dissipative effects. For 1<z, the
system evolves as if it were Hamiltonian and the phys1ca1
observables grow algebraically with time. For #>7,, the sys-
tem sets in its steady state and the statistical averages of the
physical observables become stationary. Finally, we justify
the validity range of the stationary probability distribution
(68). We recall [24] that the Markovian approximation is
valid only if 7! is much smaller than the correlation time 7
of the noise, i.e.,

yr< 1. (71)

Besides, the presence of dissipation should not alter signifi-
catively the dynamics of the fast variable ¢; thus, on the
right-hand side of Eq. (21) the second term must remain
much smaller than the first one. Using Egs. (44), (47), and
(48) this requires that y<<E~1"2"_ From the typical value
(69) of the energy and the expression of @ given in Eq. (62),
this condition becomes

(yn?*°y* < D. (72)

Thus, a sufficient condition is 9*<D. For higher values of
the dissipation rate, the expression (68) will no more be
valid. The behavior of the system can change drastically and
a phase transition to a state localized at the origin x=x=0
can occur [3,36,43].

C. Additive noise case

In this last subsection, we study the nonlinear oscillator
driven by an additive noise,

2
jzx(t) + yix(t) + ()

=&(1). (73)

The change in coordinates to energy and angle variables is
the same as in Eqgs. (13) and (14). The dynamical equations
in these coordinates will read as
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+00 +00

E=y0XE) X 2 x(E)x,(E)e™m¢

n=—00 m=—0

+o0

+ & w(E) X inx,(E)e™?, (74)
¢ = w(E) + yo'(E) E 2 inx,(E) &y éE) i(n+m)
f)(()(E) E dx éE) m¢. (75)

Using the Carmeli-Nitzan technique, we derive the following
effective Fokker-Planck equation for the energy:

c?P(;(tE) a‘;{w(E)[ ve (E) + 62(E)—:| w(E)P, (E)}

(76)

the function €,(E) was defined in Eq. (36) and &(E) is given
by
+00

1 A
&(E) = > nx,(E)%S,. (77)

n=—00

Denoting by ,Zl(, the value of the convergent series

S22 we can write

&(E) =

(78)

The constant C, was defined in Eq. (44). It is possible to
carry out explicit calculations following the same lines as for
the multiplicative noise case. If dissipation is neglected, the
probability distribution function is found to be

a 1 E& (v+1)/Q2va) E&
P,(E)= — — expl—-—— |,
F<V+1>E @Kt @Kt

2va
(79)
where @ and K are given by
+Dr-D+1 - D,,C)
P CAIULDLI N 3 ’(0). (80)
v 7

For the special cases of white noise or Ornstein-Uhlenbeck
noise, explicit expressions for K can be derived and the for-
mulae for the probability distribution function derived in
[19] using the averaging method are recovered.

Thus, in the absence of dissipation, the following alge-
braic scalings for the main observables of the system are

satisfied:
( Dt )V/[(U’+1)(V—l)+l]
E -~ oy )
720
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27 ’

Dt 1/[2(o+1)(v=1)+2]

Dt vI[2(o+1)(v—1)+2]
-(2)
In particular, when the noise is white (or if the potential is
quadratic), we recover the result that the energy grows lin-
early with time. The amplitude of the noise being constant,
the exponents in the additive case are smaller than those in
the multiplicative case, as expected.

If we take dissipation into account, the system reaches a
steady state in the long-time limit. The expression of the
stationary probability matches that of Eq. (79) if ¢ is taken to
be

y2lv+o(v-1)]

This expression defines the dissipation time scale for a non-
linear oscillator subject to an additive noise.

PHYSICAL REVIEW E 80, 011124 (2009)

V. CONCLUSION

We have used an effective coarse-grained Markovian de-
scription to carry out a quantitative analysis of the nonlinear
oscillator confined by a polynomial potential and subject to
Gaussian noise of arbitrary spectrum that decays as a power
law at high frequencies. This approach has allowed us to
calculate the distribution, in phase space, of the dynamical
system in the long-time limit. In the absence of dissipation,
the particle diffuses without bounds with an anomalous scal-
ing law. The energy transfer from the random perturbation to
the particle also follows a scaling power-law. The diffusion
exponents and the corresponding amplitudes are determined
exactly. In the presence of dissipation, the system reaches a
nonequilibrium steady state; the corresponding stationary
distribution has also been calculated analytically in the limit
of vanishingly small dissipation. The advantage of the
method used here as compared to stochastic averaging is that
it can readily be adapted to any noise spectrum. For white
and Ornstein-Uhlenbeck noises, the two approaches give
identical results. It would be of great interest to apply this
method to higher dimensional integrable systems subject to
stochastic perturbations, such as the nonlinear Schrodinger
equation in a random potential, which is often used to study
the effect of nonlinearity on localization.
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